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A method for the investigation of fractal attractors is developed, based on 
statistical properties of the distribution P(~, n) of nearest-neighbor distances /~ 
between points on the attractor. A continuous infinity of dimensions, called 
dimension function, is defined through the moments of P(6, n). In particular, for 
the case of self-similar sets, we prove that the dimension function DF yields, in 
suitable points, capacity, information dimension, and all other Renyi dimen- 
sions. An algorithm to compute DF is derived and applied to several attractors. 
As a consequence, an estimate of nonuniformity in dynamical systems can be 
performed, either by direct calculation of the uniformity factor, or by com- 
parison among various dimensions. Finally, an analytical study of the dis- 
tribution P(& n) is carried out in some Simple, meaningful examples. 

KEY WORDS: Fractals; dynamical systems; nearest neighbors; Hausdorff 
dimension; uniformity of strange attractors. 

1. I N T R O D U C T I O N  

Dur ing  the last  few years, much of  the a t ten t ion  in the s tudy of dynamica l  
systems has  been pa id  to the onset  of de terminis t ic  c h a o s / l )  Three  general  
routes  have been discovered and  carefully described(2): in termi t tency,  
pe r iod  doubl ing ,  and  quas ipe r iod ic i ty  t ransi t ion.  On ly  very recent ly have 
efforts also been addressed  t oward  the unde r s t and ing  of  chaot ic  a t t rac tors .  

The  re levant  quant i t ies  charac te r iz ing  such objects  are fractal  
d imens ion  (3~ and metr ic  ent ropy.  (4~ The tb rmer  refers to stat ic p roper t ies  

( invar iant  measure )  and  roughly  est imates  the n u m b e r  of  independen t  
var iables  involved in the process.  The  la t te r  is a dynamic  quan t i t y  which 

IBM Zurich Research Laboratory, S~iumerstrasse 4, 8803 R/ischlikon, Switzerland. 
2 Istituto Nazionale di Ottica, L. go E. Fermi 6, 50125 Florence, Italy. 

725 

0022-4715/85/0900-0725504,50/0 �9 i985 Plenum Publishing Corporation 
822/40/5-6-8 



726 Badii and Politi 

measures the loss of information on the initial conditions per unit time. As 
a matter of fact, a third set of relevant variables is represented by the 
Lyapunov exponents, which can, however, be easily computed only in 
mlmerically integrabte cases, by using the method described in Ref. 5. 
Indeed, in any experiment, only a single variable time series is generally 
available. Thus, the attractor can be reconstructed by invoking the 
embedding theorem, (61 but a rigorous application of the technique in Ref. 5 
still remains a difficult task and only some preliminary results have been 
obtained. (7~ 

Furthermore, it is worthwhile recalling the relations occurring between 
the three sets of quantities so far introduced. The metric entropy is, for 
instance, related to the sum of the positive Lyapunov exponents when 
invariant and Lebesgue measures are equivalent. (8) On the other hand, a 
relationship between dimension and Lyapunov exponents has been eviden- 
ced by Kaplan and Yorke. (9~ 

Metric entropy and fractal dimension can be used to advantage to dis- 
criminate between stochastic and purely chaotic systems. The fractal 
dimension, for instance, in the former case, is equal to the phase-space 
dimension d, while, in the latter, it is a smaller and, in general, noninteger 
number. Contrary to this, the commonly used power spectrum does not 
discriminate between the two cases which both yield a broad band struc- 
ture. 

In this paper, we focus on the problem of giving an accurate descrip- 
tion of the scaling proPerties of a fractal set, when the observational 
resolution is increased. Namely, we introduce the probability distribution 
P(& n) of nearest-neighbor (nn) distances 6 among n randomly chosen 
points on the attractor, and study the behavior of its moments (3 ~) in the 
large-n limit. (I0~ This allows definition of a "dimension function" D(7) 
which extends the semi-infinite Renyi hierarchy (m to the whole real axis. In 
particular, when self-similarity is asymptotically established, we prove that 
the dimension function (DF) yields, for specific ~ values, the capacity, 
information dimension, and all other Renyi dimensions. The main dif- 
ference with respect to the Renyi approach, however, is that nonuniform 
covering is considered here. 

We also show how knowledge of the whole DF is necessary to give a 
complete characterization of the fractal. As a consequence, the question of 
deciding which dimension is the most relevant turns out to be meaningless, 
while, instead, it is more relevant to focus our attention onto the spread 
among the different dimensions. For this purpose, we study the slope of the 
DF at the "fixed" point 7 = D(y) as a first-order estimate of the nonunifor- 
mity of the set. This quantity has been previously named "uniformity 
factor, ''(l~ and its appellative is here better elucidated showing that it 
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represents the growth rate of the relative variance of the distribution 
P(,~, n). 

Finally, a direct study of P(6, n) is performed both analytically, in 
some examples, and numerically. 

The paper is organized as follows: In Section 2 we give a brief survey 
of the commonly used definitions of fractal dimension. In Section 3, the 
dimension function is introduced, and its relationship with capacity and 
Hausdorff dimension discussed. The uniformity factor is also introduced in 
terms of a suitable entropy. In Section 4, the exact relation linking the DF 
to the Renyi hierarchy is derived. In Section 5, the expression of the 
probability distribution P(3, n) is explicitly computed for uniform Cantor 
sets 3 on a line, and numerically evaluated for two iterative maps. In Sec- 
tion 6, the numerical method for determination of the DF is explained, and 
results are given both for maps and flows. In Appendices A and B, two 
special cases are analyzed, while an integral expression for P(8, n) in a 
binary Cantor set is obtained in Appendix C. 

2. D E F I N I T I O N S  A N D  P R E V I O U S  M E T H O D S  

Since the beginning of the century, many mathematicians have been 
engaged in the task of a proper geometrical characterization of a fractal set. 
As a consequence, the attempt to satisfy the most general validity 
requirements led to the introduction of many definitions of dimension 
which, frequently, differ only in very subtle aspects. They can be roughly 
classified into two groups, the first one deriving from purely geometrical 
requests, the second being related to information theory. 

The definitions of the first group usually seem to give identical results 
for physical systems. Therefore, we refer to Mandelbrot's (3) book for a 
fairly complete review of the subject, and here we only recall the most com- 
mon of them, briefly discussing the possibility of numerical applications. 

We start from the capacity, whose definition naturally derives from the 
concept of uniform covering of a given set. Namely, after having covered 
the set with N(e) balls of radius 5, we introduce the "~, volume" 

Z,~(e) = e ~' inf N(e) (2.1) 

where the infimum is taken over all possible coverings. The capacity D o is 

3 Throughout the paper, a Cantor set is called "'uniform" whenever it is generated by keeping 
equal intervals with equal weights. This is only a particular case of a "uniform attractor" as 
defined in the text. 
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then defined either as the infimum over all 7's such that L~(e) shrinks to 0 
for the vanishingly small e, or, equivalently, as 

Do = - lim In inf N(~) (2.2) 
~ o  In  

Some variants of this definition exist (3) which are almost equivalent. The 
box-counting algorithm, for instance, is based on the introduction of a 
uniform partition of size e in the phase space, and then on the computation 
of the number N'(e) of nonempty cells. Owing to the nonoverlapping 
property of these boxes, the quantity N'(e) is not generally significantly dif- 
ferent from inf N(e), and the two definitions can be considered equivalent. 
The limitations of a numerical application of this method have already 
been investigated ~ and are mainly due to a very slow statistical con- 
vergence. In fact, the estimation of N'(e) requires generation of an increas- 
ing number of points on the attractor verifying whether they fall insides 
boxes already visited. A reliable value of N', however, can only be achieved 
after an enormously large number of points, thus rendering the method 
unfeasible for a phase-space dimension larger than 2. 

A refinement of the concept of covering has been proposed by 
Hausdorff, (14) who considered balls of variable size ~i, with the constraint 
~i~<e. As a consequence, the ~ volume turns out to be straightforwardly 
generalized to 

L~(e)  = inf ~ e~ (2.3)  
i 

where the infimum is taken over all coverings satisfying ~i ~< e. In analogy 
with the definition of capacity, the Hausdorff dimension DH is, hence, the 
infimum over all y's such that L~(e) shrinks to zero. Even when it is 
possible to build several examples showing that DH:/:Do, 4 it is still not 
clear whether there is any relevant difference in physical systems. (6) Finally, 
let us recall that, as for the capacity, some variants to D/~ have been 
introduced (see, for instance, Ref. 16). 

A physical approach to the study of chaotic attractors is, instead, 
naturally related to the scaling properties of the probability density 
(invariant measure), when the observational resolution is increased. Far- 
mer, Ott, and Yorke, (~7) and Grassberger and Procaccia, (~8~ following this 

4 The Hausdorff  dimension of any countable set of points can be proved to be 0. (~5) Hence, for 
example, the set made of all rational numbers  within the interval I-0, 1] has D;q = 0, while 
the capacity is easily shown to be 1. 
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approach, consider the mass #(x, e) contained in a ball of radius e, centered 
around x, as the relevant variable to be studied. 

Under the assumption that /~(x, e) scales as e D,(~), the pointwise 
dimension (~7t is defined as 

In #(x, e) 
Dp(X) = lim - -  (2.4) 

e~o lne 

An average over all points is usually performed to get a more reliable 
estimate. If, instead, the quantity to be averaged is g2(x, e) the correlation- 
integral exponent v (~8) will be found, 

| N ~v (2.5) 
i , j =  t 

where O is the Heavyside step function and xi, XJ are randomly chosen. 
These two exponents belong to a class of generalized dimensions 
introduced by Renyi (11) in terms of suitable entropies Kq(e), q = O, 1, 2,..., n, 

1 N(~) 
E q#l 

i =  i ( 2 . 6 )  
N(~) 

Ki(e) = - ~ P~(e)In P~(~), q = I 
~=~ 

assuming a uniform partition of the phase space with boxes of size ~, and 
defining P~(e) as the probability of the ith box. Accordingly, the Renyi 
dimensions are given by 

Dq = - lim Kq(~) (2.7) 
~ o  In e 

In particular, D O is the capacity, while Dl is called information dimension 
(see also Ref. 19), and usually coincides with the pointwise dimension. 
Moreover the dimension D 2 is nothing but the exponent v, and the general 
inequality Dq >~ Dp (when p > q) holds. (2~ 

A sort of dual approach has been adopted in Ref. 21, but that fractal 
dimension is not univocally defined. (22) For other exponents and com- 
putational methods, see Refs. 23, 17, and references therein. 

3. THE D I M E N S I O N  FUNCTION 

As we have seen in the previous section, many different definitions of 
dimension are available for a characterization of a strange attractor. Since 
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it appears disputable to establish which of them is physically most relevant, 
we have preferred to follow a different strategy. Instead of studying a single 
quantity which gives only average information on the attractor, we con- 
sider an infinite class of dimensions (all easily computable), exactly in the 
same way as different moments of a probability distribution are used to 
characterize a statistical ensemble. 

Let S be a bounded set in a d-dimensional Euclidean space E. The 
entire information on the fractal features of S is carried by the scaling 
properties of the density probability, as the observational resolution is 
increased. Here, instead of studying the properties of the invariant measure, 
we find it fruitful to follow a different approach. Namely, we start consider- 
ing a reference point x plus ( n -  1) others, all of them chosen at random 
with respect to the natural measure, on the attractor. We now define 6(n) 
as the distance between x and its nearest-neighbor y among the ( n -  1) 
other points, and introduce the probability distribution P(6, n) of nn dis- 
tances among n points. A first rough connection of P(6, n) with the fractal 
dimension is evidenced by looking at its first moment ( 6 ) = - M l ( n )  = - 

8P(6, n) dr, which asymptotically can be argued to depend on n as 

(6 )==_ml (n )~  n 1/D (3.1) 

where D is a suitable dimension whose relation with the other definitions 
given in the previous section wilt be clarified later. 

Now, following Ref. 10, we naturally extend (3.1) to the generic 
moment of order Y, 

(~~)  =- M~,(n) ~ 6"zP(6, n) &5 = Kn -~,/oe~l (3.2) 

where D(7 ) is a ),-dependent definition of dimension hereafter called dimen- 
sion function (DF), 

7 lnn 
D ( ~ ) = -  lira (3.3) 

. . . .  In M;,(n) 

The prefactor K, on the other hand, depends on both 7 and n. However, its 
dependence on y is, by definition, irrelevant, while the dependence on n 
reduces, in a large class of systems, to an unessential periodicity in Inn. f24~ 

The role of 7 is to enhance or depress different 8-length scales. More 
precisely, for increasing (decreasing) ~/, the larger (smaller) distances are 
more weighted. As a consequence, from the definition (3.3), it is possible to 
argue that D(y) is a monotonic nondecreasing function of 7, since the larger 
distances must decrease more slowly. A rigorous proof will be shown later. 
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To investigate the meaning of the DF, we start with an analytical 
study of a simple but meaningful example: the nonuniform Cantor set, 5 
which is defined as follows. Starting from the initial segment (0, 1), an 
internal open segment (central and equal to 1/3 for the standard Cantor 
set) is deleted, and two closed segments ((1 } and (2})  of lengths ~ 1  and 
~21, respectively, are left. By infinitely iterating this procedure, a fractal set 
is finally generated. Its capacity, by simple scaling arguments, can be 
proved to satisfy the following implicit relation(~7): 

1 = c~1 z)~ + c~2 D~ (3.4) 

As far as one is interested only in purely geometrical aspects, (3.4), specify- 
ing the dimension of the support is sufficient to describe the set. However, a 
more general model of attractor requires the attribution of probability 
weights Pl and f12 (/91 q-P2 = 1 ) to the contraction rates 0~ 1 and ~2, respec- 
tively. Indeed, a complete identification of any point can be achieved by 
means of an infinite series of "bits'specifying whether the point belongs to 
the right or left part, at each resolution level. Evidently, these coefficients 
do not alter the geometrical structures of the support and, hence, the 
capacity is not affected either. All the other Renyi dimensions Dq(q> 1) 
containing statistical information on the attractor, depend instead on 
weights Pl, P2. 

The self-similarity properties of this nonuniform Cantor set can be 
exploited to obtain a simple relation for the probability P(6, n) d& Indeed, 
by noting that the two subsets (1 }, (2}  are rescaled versions of the whole 
set, with space and population scale factors cq, ~2 and Pl, P2, respectively, 
the following relation holds: 

P(cS, n) d(~=plP(O~if), p,n)Tid6+ p2P(c~2(~, p2n)g2dc] (3.5) 

in the limit of large n's, when the probability that the nn of a point x does 
not belong to the same subset, is negligible. Now, from (3.5), a relation for 
the moments is easily derived, 

M~(n) = p,~i  -y f<l> Y~P(Y' pin)dy + p2a~ ~ f~2) yTp(~, p2n)dy (3.6) 

and, recalling the definition (3.2), without the unessential factor K, an 
implicit exact relation for the DF is found, 

1 = ~ I " / P  11 - :,ID('/) + a 7 . ~ , p ~  - "//D(~I (3.7) 

5 It corresponds to a horizontal section of the generalized Baker transformation. 117~ 
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We first discuss such a result in the simplified case p~ = P2-- 1/2, when (3.7) 
can be simply solved for D(7)(m): 

In 2 
D ( 7 ) = 7  (3.8) 

�9 in 2_1n(~[-or + ~2~i 

By comparing (3.4) and (3.8), it is readily seen that ), = Do yields the fixed- 
point equation D(Do)= Do, which is an implicit relation for the capacity. 
Such a preliminary result is reinforced by looking at the more general 
equation (3.7), from which it turns out that, whenever 4/= D(7), (3.4) is 
recovered, independently of the weights Pl, P2. Hence, we can conclude 
that the request to satisfy the fixed-point relation D(7)= 7 is sufficient to 
determine the capacity. Moreover, this example is easily extended to any 
attractor composed of m subsets, embedded in a d-dimensional Euclidean 
space, which is representative of a large class of physical systems3 TM 

We can now formally interpret the general equation (3.3) as a recur- 
sive relation 

In /7  
7k +~ -= D(7,) = -,lim,.oo~ 7k In M~,(n) (3.9) 

Starting with a trial initial value 70, a first approximation "~I of the capacity 
is computed and then used as a new t' coefficient in (3.9) to obtain a 
second-order approximation. The existence of at least a fixed point of 
Eq. (3.9) is quite plausible, and we simply assume it without further com- 
ment. 

It then becomes important to perform a linear stability analysis of the 
fixed point to prove the convergence of the procedure described above. Still 
referring to the nonuniform Cantor set, we must simply take the derivative 
of (3.7) with respect to 7 and then specialize the solution for 7 = Do, 

c~ ~176 In cq + c~ -D~ In cq (3.10) 
D'(Do) = l + Do o~ID 0 In Pl + 0~2 D0 tn P2 

It is easy to verify that 0 ~< D ' <  1 always except for the unphysical cases Pl 
or P2 = 0, when D' = 1. Hence, the fixed point is stable and the recurrence 
(3.9) converges. A more general study of (3.7) shows that the DF is a 
monotonic nondecreasing function for any choice of the parameters and is 
bounded between two horizontal asymptotes. The upper one, 
D(oo) = m a x ( - I n  pi/ln c~l, - l n  p2/tn ~2), is the dimension of a uniform 
Cantor set generated by keeping 1/pl(1/p2) segments of length 1/el(I/a2). 
Analogously, D ( -  00) = m i n ( - l n  p l/ln ~ ,  - i n  p2/ln ~2) can be interpreted 
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in the same way. Incidentally, the two limits correspond to the slowest and 
fastest contraction rates towards zero of the nn distances. 

When D ( - o o )  coincides with D(oo), i.e., p i=  e.-o0 ( i=  l, 2), the DF is 
everywhere constant and we speak of uniform attractor (see Ref. 25). 

Reverting to a general dynamical system, we now investigate the 
relationship of definition (3.3) with Hausdorff dimension and capacity. It is 
useful to rewrite (3.2) in a less rigorous, but more transparent, way. In fact, 
we substitute the integral in (3.2) by a sum over the n points, all of them 
chosen as reference points, evaluating the nn distances 6~(n) ( i =  1 ..... n),  

M . , ( n )  = -  6~'(n) (3.11) 
/ 7 i =  I 

Since the definition of D(7) holds for large n, the inaccuracy of (3.11) can 
be arbitrarily reduced, by choosing n sufficiently large. After multiplying 
(3.2) by n and using definition (3.11), a quantity L~.(n) is introduced, 
analogously to the L:.(e) of (2.3), 

LT(n ) = ~ 6i,(n)~n 1 -;,/D(,,t (3.12) 
i = l  

In the limit n ~ or, an immediate parallel emerges with the definitions of 
Do and D~ given in Section 2. In fact, L~,(n) diverges whenever 7' < D(?,), 
and vanishes for 7 > D(7 ). The fixed point ?, =D(7)  finally coincides with 
the capacity, as discussed further in the next section. The V-volume L~(n) is 
not necessarily constant at the fixed point, where logarithmic corrections 
might show up (see Appendix A for an example where they are present). 
An important point to discuss next is the uniqueness of the solution 
D(7)=7. In fact, in some very special cases, even an infinite number of 
solutions can be found (see Appendix A). The consequent ambiguity can 
be avoided anyhow by taking the infimum over all 7's satisfying D(7)= 7, 

The parallel with D/~ can be pushed even further if we interpret the 6j's 
as the diameters of "6 neighborhoods" around the n points, and prove that 
such balls do indeed constitute a covering of the attractor. First, notice that 
there is no overlapping of balls. Next, we require that, once given n balls, 
all the points of the attractor fall within them. If the set is uniform, i.e., the 
mass in the ith ball scales as Pioc6~o, the uncovered fraction will vanish in 
the limit n-~ oo: In fact, the left-hand side of (3.t2) becomes a sum of 
probabilities Pi. In the general nonuniform case, provided that self- 
similarity asymptotically holds, we reasonably expect to be able to cover a 
constant fraction f of the Do-dimensional volume. To test this conjecture, 
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we computed  f ,  as a function of n, in two cases: The generalized Baker 
t ransformation and the Sinai map./261 The first map  is defined by 

xn+l =x. /3 ,  0 <  y , , < a  

Y,~ + 1 = y,/a, 

x,,+ l =  (1 + x,)/3,  a <  y , , <  1 - - a  
y,~+~ = (y .  - a ) / ( 1 -  2a), (3.13) 

x . + l  = (2 + x,,)/3, 1 - a < y . < l  

y, ,+l  = ( y , -  1 +a)/a  

A horizontal  section of its asymptot ic  solution is a Can to r  set with ~ = 3, a 
nonzero probabili ty Pz in the middle part  ( 1 / 3 < x < 2 / 3 ) ,  and equal 
weights Pl = P 3  in the side stripes. Hence, its capacity is D 0 = 2  and the 
degree of nonuniformity  is controlled through a [ a  = I/3 corresponding to 
a flat probabili ty distribution Q(x, y)] .  In  Fig. t, we report  f (n )  as a 
function of n for a = 0.1, 0.2. Notice that, after some initial oscillations, the 
fraction f goes to a constant  value, which gets closer to 1 for a tending to 
1/3. The same behavior  has been observed in the case of the Sinai map  [see 
later, Section 6, (6.1)], with g = 0.3, a parameter  value which corresponds 
to a highly nonuni form at t ractor  (with Do = 2). 

t,0 

0,5 

5 10 tog n 15 

Fig. 1. Covered fraction f of the support of the attractor, for the generalized Baker transfor- 
mation (3~13), as a function of log(n). The upper curve refers to a = 0.2, and the lower one to 
a=0.1. 
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Now, since the fixed point has been clarified to be the power of 7 
which allows I;v(n) to converge to a finite value for large n, 7,~,(oo ) itself can 
be interpreted as a generalization of the volume. The main difference with 
respect to DH, comes instead from the kind of covering adopted. While the 
Hausdorff dimension requires the infimum over all possible coverings, here 
we have chosen a particular one: Indeed, in Appendix A, we show, in a 
special case, that we measure Do and not D , .  

Let us finally discuss the general shape of the DF, and the stability of 
the fixed point. Taking the derivative of both sides of (3.3) with respect to 
?, we obtain, in the large-n limit, the following expression: 

D2(7) [1 H,, (7)]  
D' (7 )=-TT- -  [ - 1-1--~n-n J (3.14) 

The function H,,(?) is an entropy defined by 

H . ( 7 ) =  - ~ p ,  ln p, (3.15) 
i 

with p~ = ~5~',/~,. ~5i'. This "~ entropy" is a positive-definite quantity which can 
always be written as 

H,~(7) = cr(~/) In n (3.t6) 

where 0 ~< or(y)~ 1. The value o'(7)= 1 corresponds to a uniform attractor. 
The extreme situation {x(7)=0 corresponds to unphysical cases, where at 
least one c}~(n) does not vanish (nonrecurrent point). By substituting (3.16) 
in (3.14), we obtain an asymptotic expression, independent of n, 

D2(?) 
D'(7) = -T ; - -  [1 - ~(v)] (3.17) 

Therefore, being D'(y)~> 0, the DF  is monotonic nondecreasing. Moreover, 
for ~ = Do, we obtain the uniformity factor 

2 =- D ' ( D o )  = 1 - a (Do)  = 1 + Ei  cSP~ In c~f ~ 
~ i  c5~o Inn 

(3.18) 

which, of course, ties within 0 and 1, thus generally proving the stability of 
the fixed point. In particular, for a uniform attractor, 2 = 0 (superstability). 
An exception, where 2 = 0, but the set is nonuniform, is treated in Appen- 
dix B. Finally, note that 2 is directly computable by its definition (3.18). 
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4. RELATION WITH THE RENYI D I M E N S I O N S  

In the previous section, we have seen that the fixed point of the DF 
yields the capacity Do. Now, we study the connection between the DF and 
all the other Renyi dimensions as defined in Section 2, 

We again start, as in Section 3, with the nonuniform Cantor set, 
whose subsets, (1 } and (2 ) ,  have probability weights Pl and P2, respec- 
tively. By considering the attractor as being composed of two parts, and 
from definition (2.6) of Renyi entropies, we have 

N(e) 

e(1-q)~:~'~)= 2 PT( e)= Z PT( ~)+ g PT(~) 
i = l  (I> <2> 

(4.1) 

By normalizing the probabilities in each of the two subsets and noting that 

Pi = Pl, ~ Pi = P 2  (4.2) 
(1)  <2> 

we obtain 

~l> K2) 
(4.3) 

each of the two subsets being a rescaled version of the whole attractor. 
Finally, by recalling the definition of Oq, w e  get the following expression 
(see also Refs. 20 and 25): 

1 = plq~i -{l - q ~ o q +  p~c( 2 (I - q)D~ (4.4) 

By comparing (4.4) with (3.6) we obtain the relation 

D[7 = ( l - q )  DqJ =Dq (4.5) 

Again (4.5) has a general validity under the assumption that self-similarity 
is established at least for large n. This can be easily proven by considering 
an initial volume and keeping rn, instead of two, subsets and repeating the 
procedure discussed above. 

In particular, when q = 0, it is readily seen that we recover the fixed- 
point relation (3.9). For q ~  1, the following important relation is 
obtained: 

n lnn  
D1 = fim D(7)= (4.6) 

~-,o Z i l n  Oi(n) 
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yielding the information dimension D t in explicit form which, for the Can- 
tor set, turns out to be 

Pl In p l + p 2 1 n  p= 
D(0) = (4.7) 

Pl In cq + P2 In e2 

Moreover, by a recursive procedure, analogous to that described for the 
capacity, it is possible to obtain all the other Renyi dimensions. The 
relation (4.5) is illustrated in Fig. 2 where we can see how the D(s  corres- 
pond to the crossing points of the DF with a series of straight lines with 
slopes 1 / ( 1 -  q). The information dimension D1, being its abscissa (7 = 0 )  
known a priori, is the simplest one to be measured without iterative 
methods. We can also see how D(0) is close to the pointwise dimension. (17) 
Indeed, starting from the idea that the nn distances around a given point x 
on the attractor scale as n -I/D(X~, we simply use the average in (4.6) to 
obtain a reliable estimate of the local dimension. The choice of ~ as the 
relevant scaling quantity, instead of the mass as in Ref. 16, should be essen- 
tially irrelevant. 

While the Renyi dimensions extend to the left of D o (region L), here 
the right part (R) is naturally defined, too. Region R in general cannot be 

A 
D (~,) 

_13 ~ 

D~ 

. . . . . . .  0 2 

D3 

- 2 D  3 -D~ 0 3' 

Fig. 2. Sketch of the DF D(7 ) versus 7 displaying a geometrical picture of relation (4.5). The 
various intersections define the Renyi dimensions Do, D1, D2, etc. 
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thought to represent other me  aingful dimensions, as its values can 
increase even above the phase-space dimension d, as shown in Appendix A. 
Of course, this kind of example is never encountered in physical attractors, 
which do not contain isolated points. However, even disregarding 
pathological cases, it is always possible to imagine situations where the dis- 
tances 6 shrink to zero slower than n -  ~/~ in some particular subregions. 
The nonuniform Cantor set, for instance, displays such behavior when P l is 
chosen so small that - l n  pJ ln  ~ > 1. 

Anyhow, R contains further information on the attractor, and this is 
particularly evidenced in the example of Appendix A, where the right part 
exhibits a completely different behavior from that of the left part. More 
generally, choosing 6o0 as the new independent variable, R is 
straightforwardly related to the moments of the probability distribution 
~z(6~176 n), 6 In particular, the first moment goes as 

Moon 1/n (4.8) 

while the second one is simply M2D0- Hence, the relative r.m.s. 

( ~A M 2 ~ ~/2 
A(n) = ' ~ 2 D ~  o0~ (4.9) 

MD o 
behaves as 

since, for large 
approximation 
Section 6), 

3 (n) ~ n I - Oo/O~2Ool (4.10) 

n's, M2o,~M2t, o owing to D(2Do)>D o. In the linear 
D(2Do) = Do + D'(Do) Do, which is widely justified (see 

A ( n ) ~ n  ~ (4.11) 

where we recall that 2 = D'(Do) is the "uniformity factor" introduced in the 
previous section. Equation (4.11 ) now motivates the appellative given, as it 
measures the rate of broadening of the distribution W(6 ~~ n) for increasing 
n. 

5. P R O B A B I L I T Y  D I S T R I B U T I O N  OF n n  D I S T A N C E S  

In this section, we investigate the global features of P(6, n) for fixed n. 
We first start from the simplest example of a uniform Cantor set with 

6 The probability W(6 D~ n) is, essentially, the same as P(6, n): The change of name is due to 
the change of the first argument. 
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Pl =P2 = I/2 and ~1 z ~ 2 = ~ -  In such a case, the self-similarity relation 
(3.5) reads as 

P( 6, n) = c~P(c~6, n/2 ) (5.1) 

It is worthwhile introducing the probability S(6, n) of a reference point x to 
have a nearest neighbor, chosen among ( n -  1 ) points, within a distance c~, 

s(6, n) = P(y, n) dy (5.2) 

which is both more manageable and satisfies a simpler relation than (5.1), 
namely, 

S(6, n) = S(c~6, n/2) (5.3) 

This functional relation straightforwardly implies 

S(6, n) = F(3~2/l"~n) = F(aDOn) (5.4) 

where F is a generic function of the argument n6 o~ which, hence, contains 
the scaling relation between 6 and n defining the dimension Do. The com- 
plete determination of S(& n) now requires some boundary conditions (i.e., 
the dependence on 6 for a fixed n or vice versa). 

We prefer to follow a direct method which allows for the evaluation of 
S(c5, n) for any n and not only for large n, as requested for the validity of 
(5.4). In fact S(6, n) is simply the probability that, once a reference point x 
has been chosen, at least one out of the other n points is closer than 6, i.e., 
S(3, n) is complementary to the probability that no points fall within a dis- 
tance 6 from x. Hence, exploiting the uniformity of the probability density 
[i.e., the mass inside a segment length 23 is (26)D~ S(& n) turns out to be 

S(& n ) =  1 - f1 -- (2~5)D~ (5.5) 

which holds for any value of n. To make a comparison with the scaling 
relation (5.4), we notice that, for large n's, the distances 6 are small and 
(5.5) can be approximated by using the definition of the Neper's number e, 

S(6, n ) =  1 - e x p [ -  n(26) ~ (5.6) 

This relation satisfies (5.4), as it should, being the last one defined for large 
n's. Now, taking the derivative of (5.6) with respect to 6, an explicit 
expression for P(6, n) is obtained, 

P(6, n) = 2Don(26) D~ ~ exp[ -n (26)  ~176 (5.7) 
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and we see that, for 6 --* o% P(6, n) tends to 0 as exp[-n(26)~ while for 
~ 0 it diverges owing to the inequality Do < 1. Expression (5.7) can be 

recognized as a Brody distribution(27~; in particular, in the nonfractal case 
Do = 1, an exponential is recovered. 

Let us now perform the analysis of a simple nonuniform set, namely, 
the binary Cantor set defined by ~ = 2 and p~ r P2. Once chosen at random 
an interval of width 23 around the point x, the mass inside that segment is 
now dependent on x. Indeed, if we divide the interval (0, 1) into 2 k equal 
segments (of width 26=2-k ) ,  any of them being fully identified by a 
sequence of k bits, their respective weight will be given by the probability 
of a suitable ratio of 0's and l's. Hence, the evaluation of S(6, n) requires 
an average of (5.5) over all sequences of bits to be performed, and this 
causes the uniformity factor to be different from 0. A detailed calculation is 
carried out in Appendix C. 

To complete the discussion on the nn distribution, we have 
numerically evaluated W(~ D~ n) for the attractors of Sinai [see, later, 
equation (6.1)], Henon, (28) and Zaslavskij. (29) The choice of W, instead of 
P, is motivated by the fact that, in this way, we always obtain an exponen- 
tial distribution for uniform attractors. In Fig. 3, we report In W(6 D~ n) 
versus 6 D~ for n = 2  ~2, in the above-mentioned cases. Note that the 
deviations from a straight-line behavior, present in the Henon and Sinai 
attractors, indicate their nonuniformity. 

From the above results, the advantage of transferring the definition of 
dimension from the phase-space probability density to the nn-distances 
probability P(6, n) clearly emerges] First, this allows us to work with 
scalars (6) instead of vectors, thus simplifying the numerical computations. 
Second, the method guarantees a constant-fl'action covering of the support, 
thus ensuring the reliability of our results. 

6. N U M E R I C A L  M E T H O D S  A N D  R E S U L T S  

6.1. Numer ica l  M e t h o d s  

The most direct application of (3.2) is achieved by storing an array 
containing a large number of points N, chosen as an integer power of 
2 (N= 2k), in a sequential way with an appropriate delay. The mean value 
@(n)) ,  with n = 2 j, is computed by dividing the N data into 2 (k- i) blocks, 
each containing n points. The distances 6i(n) are evaluated by comparing 
the point xi with all the others contained in the same block. The 6i(n) are 
then stored in an array, and the average is performed over all the N points: 

7 Methods of Refs. 18, 19, 21, and 23 offer similar advantages. 
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Plot of tn W(5 D~ n) versus 5 z~~ with n = 2  I2, for (a) Sinai map ( g =  0.3), (b) Henon 
attractor, and (c) Zaslavskij attractor. 
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In this way, independently of n, the same statistical weight is attributed to 
the values (5(n) ) .  Such a procedure, however, does not allow us to reach 
very large values of n. This limitation may prevent correct estimations, 
especially when th~ self-similarity shows up only for very small length 
scales (large n). (24) Therefore, we have sometimes preferred to employ a less 
rigorous, but equally reliable method: A fixed number m of points is chosen 
at random on the attractor and stored in the computer memory. They are 
then compared with every newly generated point to calculate the quantities 
6i(n)(i= 1,..., m), which are continuously updated in an additional array. 
The average (3.2) is then performed at given n values (exponentially 
spaced), over the m points. 

In the present paper, we have usually chosen m = 5000, so that it has 
been possible to attain n = 219 points in a reasonable amount of CPU time 
on an IBM 3083 computer. Apart from time limitations, another difficulty 
arises from the divergency of the relative r.m.s. A(n )=n  ;~ 
[Eqs. (4.9)-(4.11)]. In fact, the number m may result in being too small to 
guarantee a satisfactory statistical accuracy when increasing n. 

For maps, the time needed to generate the points is negligible in com- 
parison to that spent in calculating the nn distances, for five- to seven- 

Fig. 4. 

A "E 

I I t . . . . . . . . . . . . . .  

5 10 15 
log n 

Typical curves log(6(n)) versus log n for first, second, and third nearest neighbors, 
respectively, from bottom to top. 
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dimensional flows, the two times are of the same order. Once the 6i(n) are 
known, an estimate of D(7) is possible for many values of y simultaneously, 
without much effort, thus getting a fairly good picture of the attractor. 

Special care must be devoted to renormalize all variables between 0 
and 1, in order not to underestimate the contribution of those having a 
limited range of variation. This is a numerical procedure which avoids the 
necessity of using a very large number of points (small distances). 

Another important comment concerns the order of the neighbors. It is, 
indeed, easy to verify that the relations discussed so far in terms of the first 
nn also hold for higher-order nn, up to unessential multiplicative factors. 
However, the sensitiveness to statistical fluctuations is much weaker for 
second and third nn, rather than for first nn (see Fig. 4). Hence, this 
property allows more accurate estimations, at the expense of larger 
memory requirements only. We have always worked with third nearest 
neighbors. 

Finally, a few comments on the integration algorithm adopted for the 
differential equations. We have used a modified fourth-order Runge-Kut- 
ta-Gills method with integration steps between 10 -2 and 10 -3, depending 
on the system. 

6.2. Results 

In Table I, we report the dimension function D(7), computed at five 
different values of 7, for the Henon attractor,(2a) the Zaslavskij attractor, (29) 
the Sinai map, (26~ and two flows: The Roessler hyperchaos system (31~ and a 
seven-mode truncation of the Navier-Stokes equations. (32) We have always 
averaged over 5000 points letting n go to 219 for the maps, and 2 ~6 for the 
flows. In the case of the Sinai map and the Roessler system, a measure was 
also performed with 40 000 x 2 I6 points and 40 000 x 2 ~5 points, respec- 
tively. The DF  is easily computed for the Henon map, as the uniformity 
factor is not very large, even though this attractor cannot be considered 
uniform. The Zaslavskij attractor, on the contrary is quite uniform, but 
care must be taken because the "self-similarity period ''~24~ is very long. 

The Sinai map, 

x,,+~=x,~+y,+gcos(2rcy,) mod 1 

Y,, + l = x,  + 2)5, mod 1 
(6.1) 

differently from the previous ones, has a nonconstant Jacobian 
J =  1 + 2ggsin(2~zy,). In particular, when the parameter g is larger than 
1/2~, J vanishes along two horizontal lines and, simultaneously, the trans- 
formation is no longer invertible. Therefore, the theorem of L. S. Young,(33) 
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Table I. 

Badii and Politi 

Dimension Function D(7)  (Evaluated at Five Different 7 Values), and 
Uniformity Factor ~. for Four Maps and Two Flows, ~ 

Maps ~/= -2  y= -1 ),=0 ?,=1 7=2 2 

Henon b 1.23 + 0.02 1.24 -+ 0.01 1.26 -+ 0.01 1.27 -+ 0.01 1.28 _+ 0.01 ~ 0.02 
Zaslavskij b 1.54-+0.02 155_+0.01 1.55_+0.01 1.56_+ 0.01 1.57_+0.02 v0.01 
Sinai b 1.60 _+ 0.01 1.66 _+ 0.01 1.76 _+ 0.01 1.88 • 0.01 2.00 _+ 0.01 ,-~ 0. t0 
Sinai ~ 1.57 _+ 0.02 1.65 • 0.01 1.73 + 0.01 1.86 -+ 0.01 2.01 _+ 0.01 ~ 0.11 

Flows 7 = -1 7 = 0 ,/= 1 7 = 2 7 = 3 )~ 

R/Sssler a 2.90 + 0.03 2.92 + 0.03 2.93 _+ 0.03 2.97 -+ 0.03 3.01 + 0.03 ~ 0.03 
Franceschini ~ 3.10_+0.02 3.12:20.02 3.13_+0.02 3.15+__0.01 3.16_+0.0l ~-, 0.01 

i i  i I H H  I I I II  , I I'l I I ~ ,  = 

Parameter values for the Henon and Zaslavskij attractors as in Refs. 18, 21, and 30, for the 
Roessler system as in Ref. 31 and, for the Sinai map, g=0.3. Note that the ), values are 
integers between - 2  and 2 for the maps, and between - 1  and 3 for the flows. See text for 
further information. 

b 5000.219 Points. 
c 40000.216 Points. 
d 40000.215 Points. 

5000.216 Points. 

proving the equali ty between informat ion  dimension D~ and Lyapunov  

dimension DL, does not  apply. Indeed, indicat ing with A~ and  Aa the 
Lyapunov  exponents,  we found that D L =  1 +A~/fA2I is very close to D1, 

as long as g < 1/2re, but  moves toward the value D O = 2, for g > 1/2~z. We 

also found that  the at t ractor  becomes highlyy nonun i fo rm ( 2 ~ 0 . 1 )  for 
g = 0 . 2 ,  0.25, and  0.3 (all larger than  1/2r~), while it is very uniform for 

small g. 
The Roessler system 

2 =  - y - z  

3~= x + 0 .25y+  w 
(6.2) 

2 = 2.2 + xz 

~ = 0 . 5 w -  0.5z 

exhibits two interesting features: noncons t an t  divergence and two positive 
Lyapunov  exponents.  The evaluat ion of D(7) is delicate because the 

variable z remains close to zero ( ~  0.1 ) for long times and, suddenly, j umps  
for short times up to values a round  270. This region being very rarely 
visited, a large n u m b e r  of points  is required to average over a represen- 

tative sample of the attractor.  Therefore, even choosing 40 000 points,  the 
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errors are larger than in other examples. The attractor does not seem to be 
very nonuniform (2~0.03) but, also in this case, the Lyapunov dimension 
D L is closer to Do, rather than to D1. 

The seven-mode system of Ref. 32 has been studied with the Reynolds 
number R = 4 0 0 ,  where a strange attractor exists. With the following 
initial conditions (xl = 0.264 827 9, x2 = 1.564 438 7, x3 = 5.544 144 0, x4 = 
2.687 8560, x5=  8,678 583 8, x 6 = - 0 . 9 9 7 1 5 7 2 ,  x 7=8.4314877) ,  the 
Lyapunov dimension is D L -- 3.12. In contrast to the picture of the attrac- 
tor, as obtained from a Poincar~ section, (32t which exhibits a very dense 
region surrounded by more dilute ones, the uniformity factor is quite low. 
Also, the Kaplan-Yorke estimate is in agreement with the value D(0). 

Other models have been analyzed, like the Lorenz attractor (34~ and the 
binary Cantor  set recovering, in the first case, the known value D(7)~2.06 
for any ~ and, in the second one, the theoretical results D o =  1 and 
D 1 = - (p~  In Pl + P2 In p2)/ln 2. 
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A P P E N D I X  A. D I M E N S I O N  F U N C T I O N  F O R A  
N O N R E C U R R E N T  SET OF POINTS 

In this Appendix, we study the dimension function for the anomalous 
set of points A = {x I x = I/nS}. A random choice of points in this case is 
meaningless because it would always yield x = 0, which does not even 
belong to the set. A more sensible method would be to fix a rule to fill the 
set A. As already pointed out, different rules will change the curve D(7), 
except for the fixed point. Hence, here we follow the natural generation 
rule, namely, t, 1/28, 1/38,..., tin 8. In this way, we note that all these points 
are not recurrent. As the exclusion of a finite number of points does not 
affect the final result, we neglect the contribution of the first n o points. 
Thus, we can approximate cSi(n ) with 
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and, substituting the sum over i with an integral, 

(6~>-n-- o i~(~+1) (A2) 

By recalling (3.2), we obtain, apart from multiplicative factors, 

/,/- 7/D(~,) ,... 

In n 
n 

[n-7(P+l) 1 
- n  l n l - ~ +  1)], 7 r  l+B 

l 
T=l+ fl 

(A3) 

Either the first or the second term on the right-hand side, asymptotically 
predominates, according to the value of 7. Namely, if 
?<l/( l+fl) ,D(7)=l/( l+fl)  and, if ~ > l / ( l + f l ) ,  D ( 7 ) = 7  (see Fig. 5). 
The existence of an infinity of fixed points justifies the importance of taking 
the infimum in the definition of Do, avoiding possible ambiguities. 
Moreover, at the fixed point, the generalized volume does not tend to a 
constant--instead it shows a logarithmic law. 

Fig. 5. 

D( I )  

0o ~ 

Function D(2 ) for the example of Appendix A. 
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Following the above prescription, Do turns out to be 

Do = 1/(1 + fl) (A4) 

This result coincides with the well-known value of the capacity, confirming 
the argued equivalence of the two quantities. The constancy of the left part 
of the curve (with respect to Do) does not imply the uniformity of the set, 
as it is clearly evidenced by the right part. Note that the method is suc- 
cessful also in this peculiar example, where the nn distances do not tend to 
zero. 

A P P E N D I X  B. U N I O N  OF D I F F E R E N T  C A N T O R  SETS 

Let us consider the union U of m uniform Cantor sets, each one 
generated by dividing the unit segment into as parts and deleting ( a , -  ns) of 
them. Let us indicate with pi the weight of the ith set ( Y ~  1 P~ = 1 ). If n is 
the total number of points, npi of them will belong to the ith Cantor set. 
This is tantamount to stating that the generation step is labeled by the 
index 

k, = ln(np,)/tn(ni) (Bt) 

Hence, the npi nn distances in the ith set are all equal to a7 '~. The 
straightforward application of relation (3.2) yields 

which can be written as 

(3 z') = ~ p,a7 -~'ce (B2) 
i = l  

( ~ ' )  = ~ pia[ -~qnpi/ln'~" n-~/lnn#In%.,~n-~'/D(V) 
i ~ l  

(B3) 

Note that, when 7 > 0, in the asymptotic limit n ~ oo, the leading term on 
the left-hand side is the one with the largest exponent In (ni)/ln(ai), 
independently of ? (see Fig. 6). Vice versa, when 7 < 0, only the smallest 
exponent survives. It is then interesting to study the discontinuity point 

= 0, which corresponds to taking the geometric mean. The result is 

In< 
psi ,i (B4) 

Clearly, the capacity Do of U coincides with the largest one of its subsets, 
according to an obvious request for a definition of dimension. Moreover, it 
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0o 

01 

Do u 

Fig. 6, Function D(~/) for the superposition of different Cantor sets, Appendix B. 

does not evidently depend on the weights Pi. The information dimension 
D(0), on the contrary, is sensitive to all geometrical and probabilistic 
features of U. All the other Renyi Dq yield the smallest of the dimensions of 
the Cantor sets, thus showing that they are not able, in this example, to 
catch the relevant information for the ensemble U. Finally, it is evident that 
the uniformity factor being 0, it becomes useless, and the whole picture of 
the set is only provided by the complete DF. 

A P P E N D I X  C. nn D ISTRIBUTION FOR THE BINARY CANTOR 
SET 

A direct evaluation of S(6, n ) =  l - S ( &  n) is developed here for a 
binary Cantor set. Let Pl and P2 be the probabilities of bits 0 and 1, respec- 
tively. The mass inside a generic segment of width 23 = 2 -k is simply given 
by the probability p] p~- i, where i is nothing but the number of 0's among 
all the k bits defining the segment given. Hence, the probability S' of having 
no points inside such a segment after n "throws" is 

i = 0  

where (~) indicates the multiplicity of each sequence of bits. We now study 
the asymptotic limit of large n and, consequently, small 6's. The first factor 
on the right-hand side can be approximated with an exponential, the rest 
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with a Gaussian centered around kpl having variance k p l P 2 / 2  , and the 
sum goes into an integral 

| k P l  i k I ( i  -- kp.~l ) 21 
(2~kplpz)l/2Io eXp[ -n~_~)  la2jexpE kplP2 J 

%= di (C2) 

It is, then, convenient to introduce the variable f = i / k  and substitute 
26 = 2--~; hereafter, we also indicate with log the base-of-two logarithm 

. -log(2c5)1'/2 , 
S= 2--~p~ ] fo exp(-n(2a)-Exl~176 

x exp ~log 26 ( f -p~)21 df (C3) 
L Px P2 J 

To make a clear comparison with the uniform case, we introduce the 
variable 

= --flog Pl - (1 - f ) l o g  P2 (C4) 

yielding 

I -log(26)11/2 1_____ f-Logpiexp[_n(26)>] 
2-~plP-~2 d log Pl/P2 --1ogpl 

[ log(26) ] 
x exp (@+pllogp~+p21ogp2) 2 d~ (C5) 

P l P2 I~ Pz/P l ) 

where we have assumed p2<pl. This expression can be interpreted as a 
superposition of distributions of uniform Cantor sets with different dimen- 
sions. Note that @ ranges between - l o g  p, and - l o g  P2 which coincide 
with the asymptotes of the DF D ( - o o )  and D(oo), as can be ascertained 
from (3.7) taking cq = cr = 2. 

Moreover, the weight function is a Gaussian centered at the infor- 
mation dimension which, then, appears to play a special role. 

An analytic expression for the integral (C5) is not available, but its 
interpretation is fully contained in the interplay of the two exponential 
functions. 
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